М1.	 (a) M1 Benzene is more stable than cyclohexatriene more stable than cyclohexatriene must be stated or implied If benzene more stable than cyclohexene, then penalise M1 but mark on If benzene less stable: can score M2 only 	1								
	M2 Expected ΔH° hydrogenation of C ₆ H ₆ is 3(–120)									
	= -360 kJ mol^{-1} Allow in words e.g. expected ΔH° hydrog is three times the ΔH° hydrog of cyclohexene	1								
	M3 Actual ΔH° hydrogenation of benzene is									
	152 kJ mol ⁻¹ (less exothermic)									
	or 152 kJ mol ¹ different from expected Ignore energy needed									
	M4 Because of delocalisation or electrons spread out or resonance	1								
() No mark for name of mechanism									
	Conc HNO₃ If either or both conc missing, allow one;	1								
	Conc H₂SO₄ this one mark can be gained in equation	1								
	$2 H_2SO_4 + HNO_3 \rightarrow 2 HSO_4^- + NO_2^+ + H_3O^+$									
	OR									
	$H_2SO_4 + HNO_3 \rightarrow HSO_4^- + NO_2^+ + H_2O$									
	OR via two equations									
	$H_2SO_4 + HNO_3 \rightarrow HSO_4^- + H_2NO_3^+$									
	$H_2NO_3 + \rightarrow NO_2^* + H_2O$ Allow + anywhere on NO_2^*									

+ on H in intermediate loses M2 not M3

3

(c) If intermediate compound V is wrong or not shown, max 4 for 8(c)

or chlorocyclohexane or bromocyclohexane

1

1

Reaction 3

M2 HBr

M3 Electrophilic addition Allow M2 and M3 independent of each other

Reaction 4

	M4 Ammonia if wrong do not gain M5	1	
	Allow M4 and M6 independent of each other	1	
	M5 Excess ammonia or sealed in a tube or under pressure	1	
	If CE e.g. acid conditions, lose M4 and M5	1	
	M6 Nucleophilic substitution	1	
(d)	Lone or electron <u>pair on N</u> No marks if reference to "lone pair on N" missing		
	No marks in reference to Tone pair on the missing	1	
	Delocalised or spread into ring in U	1	
	Less available (to accept protons) or less able to donate (to H^{\cdot})	1	[19]

M2.	(a)	(i)	W	3				1
		Х	4					1
		Y	2					1
	(ii)							

1

(b) (i) NO₂⁺ allow + anywhere can score in equation

 $HNO_3 + 2H_2SO_4 \rightarrow NO_2^+ + 2HSO_4^- + H_3O^+$

1

1

1

OR

 $HNO_{3} + H_{2}SO_{4} \rightarrow NO_{2}^{*} + HSO_{4}^{-} + H_{2}O$ or use two equations via $H_{2}NO_{3}^{*}$

(ii) electrophilic substitution Not Friedel Crafts

Allow Kekule structures + must be on N of 'NO₂ (which must be correct) both NO₂ must be correctly positioned and bonded to gain M2

M1 arrow from circle or within it to N or to + on N horseshoe must not extend beyond C2 to C6 but can be smaller + not too close to C1 M3 arrow into hexagon unless Kekule allow M3 arrow independent of M2 structure ignore base removing H in M3

Not NaBH₄ Not LiAlH₄ Not Na/C₂H₅OH not conc H₂SO₄ or any HNO₃

$$O_2N$$
 NO_2 + 12[H] \rightarrow H_2N NH_2 +

4H₂O Or 6H₂

allow C₆H₄(NO₂)₂ etc , allow NO₂– NH₂– i.e. be lenient on structures, the mark is for balancing equ

(ii)

allow –CONH ignore [], as in polymer

1st mark for correct peptide link

 $2^{\mbox{\tiny nd}}$ mark for the rest correct including trailing bonds

2

1

(iii)	M1 Kevlar is <u>biodegradeable</u> but polyalkenes not allow Kevlar is <u>more</u> biodegradeable	
		1
	M2 Kevlar has <u>polar</u> bonds/is a (poly) amide/has peptide link	
	comment on structure of Revial	1
	M3 can be hydrolysed/attacked by nucleophiles/acids/	
	bases/enzymes	1
	M4 polyalkenes <u>non polar</u> /has <u>non-polar</u> bonds	
	comment on structure of polyalkenes but not just strong	
	bonds	1

[9]

1

M4. (a) (nucleophilic) addition-elimination

PhysicsAndMathsTutor.com

N-ethylpropanamide minus on NH₂ loses M1 M2 not allowed independent of M1, but allow M1 for correct attack on C+ +C=O loses M2 only allow M4 after correct or very close M3 lose M4 for CI⁻ removing H⁺ in mechanism, but ignore HCI as a product Not N-ethylpropaneamide

(b)	CH₃CN or ethan(e)nitrile or ethanonitrile not ethanitrile								
		but allow correct formula with ethanitrile	1						
	for each step wrong or no reagent loses condition mark contradiction loses mark								
	Step 1	Cl ₂ uv or above 300 °C							
		wrong or no reagent loses condition mark	1						
	Step 2	KCN	1						
	aq and alcoholic (both needed)								
		allow uv light/(sun)light/uv radiation	1						
	Step 3	H₂/Ni or LiAlH₄ or Na/C₂H₅OH not CN- but mark on NOT HCN or KCN + acid, and this loses condition mark NOT NaBH₄ Sn/HCl (forms aldehyde!) ignore conditions							

[12]